Show code cell source
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib_inline
matplotlib_inline.backend_inline.set_matplotlib_formats('svg')
import seaborn as sns
sns.set_context("paper")
sns.set_style("ticks");
The point-predictive Distribution - Separating Epistemic and Aleatory Uncertainty#
We will demonstrate how we can separate epistemic and aleatory uncertainty.
Example (Quadratic)#
Let’s repeat what we did above with a quadratic example. Here are some synthetic data:
np.random.seed(12345)
num_obs = 10
x = -1.0 + 2 * np.random.rand(num_obs)
w0_true = -0.5
w1_true = 2.0
w2_true = 2.0
sigma_true = 0.1
y = (
w0_true
+ w1_true * x
+ w2_true * x ** 2
+ sigma_true * np.random.randn(num_obs)
)
fig, ax = plt.subplots()
ax.plot(x, y, 'x', label='Observed data')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
plt.legend(loc='best', frameon=False)
sns.despine(trim=True);
Let’s also copy-paste the code from previous hands-on activities for generating the design matrix and fitting the models.
import scipy
def get_polynomial_design_matrix(x, degree):
"""Return the polynomial design matrix of ``degree`` evaluated at ``x``.
Arguments:
x -- A 2D array with only one column.
degree -- An integer greater than zero.
"""
assert isinstance(x, np.ndarray), 'x is not a numpy array.'
assert x.ndim == 2, 'You must make x a 2D array.'
assert x.shape[1] == 1, 'x must be a column.'
cols = []
for i in range(degree+1):
cols.append(x ** i)
return np.hstack(cols)
def get_fourier_design_matrix(x, L, num_terms):
"""Fourier expansion with ``num_terms`` cosines and sines.
Arguments:
x -- A 2D array with only one column.
L -- The "length" of the domain.
num_terms -- How many Fourier terms do you want.
This is not the number of basis
functions you get. The number of basis functions
is 1 + num_terms / 2. The first one is a constant.
"""
assert isinstance(x, np.ndarray), 'x is not a numpy array.'
assert x.ndim == 2, 'You must make x a 2D array.'
assert x.shape[1] == 1, 'x must be a column.'
N = x.shape[0]
cols = [np.ones((N, 1))]
for i in range(int(num_terms / 2)):
cols.append(np.cos(2 * (i+1) * np.pi / L * x))
cols.append(np.sin(2 * (i+1) * np.pi / L * x))
return np.hstack(cols)
def get_rbf_design_matrix(x, x_centers, ell):
"""Radial basis functions design matrix.
Arguments:
x -- The input points on which you want to evaluate the
design matrix.
x_center -- The centers of the radial basis functions.
ell -- The lengthscale of the radial basis function.
"""
assert isinstance(x, np.ndarray), 'x is not a numpy array.'
assert x.ndim == 2, 'You must make x a 2D array.'
assert x.shape[1] == 1, 'x must be a column.'
N = x.shape[0]
cols = [np.ones((N, 1))]
for i in range(x_centers.shape[0]):
cols.append(np.exp(-(x - x_centers[i]) ** 2 / ell))
return np.hstack(cols)
def find_m_and_S(Phi, y, sigma2, alpha):
"""Return the posterior mean and covariance of the weights
of a Bayesian linear regression problem.
Arguments:
Phi -- The design matrix.
y -- The observed targets.
sigma2 -- The noise variance.
alpha -- The prior weight precision.
"""
A = (
Phi.T @ Phi / sigma2
+ alpha * np.eye(Phi.shape[1])
)
L = scipy.linalg.cho_factor(A)
m = scipy.linalg.cho_solve(
L,
Phi.T @ y / sigma2
)
S = scipy.linalg.cho_solve(
L,
np.eye(Phi.shape[1])
)
return m, S
Fit a \(7\) degree polynomial:
Show code cell source
import scipy.stats as st
# Parameters
degree = 7
sigma2 = 0.1 ** 2
alpha = 5.0
# Weight prior
w_prior = st.multivariate_normal(
mean=np.zeros(degree+1),
cov=np.eye(degree+1) / alpha
)
# Design matrix
Phi = get_polynomial_design_matrix(x[:, None], degree)
# Fit
m, S = find_m_and_S(Phi, y, sigma2, alpha)
# Weight posterior
w_post = st.multivariate_normal(mean=m, cov=S)
As we discussed in the video, it is possible to get the posterior point predictive distribution for \(y\) conditioned on \(\mathbf{x}\) and to separate aleatory from epistemic uncertainty. The posterior point predictive is:
\(\sigma^2\) corresponds to the measurement noise.
\(\boldsymbol{\phi}(\mathbf{x})^T\mathbf{S}\boldsymbol{\phi}(\mathbf{x})\) is the epistemic uncertainty induced by limited data.
Here is how to visualize both of these:
Show code cell source
xx = np.linspace(-1, 1, 100)
Phi_xx = get_polynomial_design_matrix(xx[:, None], degree)
# Posterior predictive mean
yy_mean = Phi_xx @ m
# Posterior predictive epistemic variance
yy_var = np.einsum(
'ij,jk,ik->i',
Phi_xx,
S,
Phi_xx
)
# Posterior predictive epistemic + aleatory variance
yy_measured_var = yy_var + sigma2
# 95% posterior predictive credible interval
yy_std = np.sqrt(yy_var)
yy_measured_std = np.sqrt(yy_measured_var)
# Epistemic only
yy_le = yy_mean - 2.0 * yy_std
yy_ue = yy_mean + 2.0 * yy_std
# Epistemic + aleatory
yy_lae = yy_mean - 2.0 * yy_measured_std
yy_uae = yy_mean + 2.0 * yy_measured_std
# The true response for plotting
yy_true = w0_true + w1_true * xx + w2_true * xx ** 2
# Plot
fig, ax = plt.subplots()
ax.plot(xx, yy_mean, 'r', label="Posterior mean")
ax.fill_between(
xx,
yy_le,
yy_ue,
color='red',
alpha=0.25,
label="95% epistemic credible interval"
)
ax.fill_between(
xx,
yy_lae,
yy_le,
color='green',
alpha=0.25
)
ax.fill_between(
xx,
yy_ue,
yy_uae,
color='green',
alpha=0.25,
label="95% epistemic + aleatory credible interval"
)
ax.plot(x, y, 'kx', label='Observed data')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
plt.legend(loc="best", frameon=False)
sns.despine(trim=True);
Questions#
Rerun the code cells above with a very small \(\alpha\). What happens?
Rerun he code cells above with a very big \(\alpha\). What happens?
Fix \(\alpha\) to \(5\) and rerun the code cells above with a very small and very big value for \(\sigma\). What happens in each case