Hide code cell source
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib_inline
matplotlib_inline.backend_inline.set_matplotlib_formats('svg')
import seaborn as sns
sns.set_context("paper")
sns.set_style("ticks");

Maximum a Posteriori Estimate - Avoiding Overfitting#

Let’s load the motorcycle data to play with:

Hide code cell source
np.random.seed(123456)

num_obs = 10
x = -1.0 + 2 * np.random.rand(num_obs)
w0_true = -0.5
w1_true = 2.0
w2_true = 2.0
sigma_true = 0.1
y = (
    w0_true 
    + w1_true * x 
    + w2_true * x ** 2 
    + sigma_true * np.random.randn(num_obs)
)

fig, ax = plt.subplots()
ax.plot(x, y, 'x', label='Observed data')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
plt.legend(loc='best', frameon=False)
sns.despine(trim=True);
../_images/e48ebad03248e7b571ee6cde4c75992a416ee954eae215c2d8f0cce3d84ae0f8.svg

Let’s also copy-paste the code for creating design matrices for the three generalized linear models we have considered so far:

def get_polynomial_design_matrix(x, degree):
    """Return the polynomial design matrix of ``degree`` evaluated at ``x``.
    
    Arguments:
    x      -- A 2D array with only one column.
    degree -- An integer greater than zero.
    """
    assert isinstance(x, np.ndarray), 'x is not a numpy array.'
    assert x.ndim == 2, 'You must make x a 2D array.'
    assert x.shape[1] == 1, 'x must be a column.'
    cols = []
    for i in range(degree+1):
        cols.append(x ** i)
    return np.hstack(cols)

def get_fourier_design_matrix(x, L, num_terms):
    """Fourier expansion with ``num_terms`` cosines and sines.
    
    Arguments:
    x          --  A 2D array with only one column.
    L          --  The "length" of the domain.
    num_terms  --  How many Fourier terms do you want.
                   This is not the number of basis
                   functions you get. The number of basis functions
                   is 1 + num_terms / 2. The first one is a constant.
    """
    assert isinstance(x, np.ndarray), 'x is not a numpy array.'
    assert x.ndim == 2, 'You must make x a 2D array.'
    assert x.shape[1] == 1, 'x must be a column.'
    N = x.shape[0]
    cols = [np.ones((N, 1))]
    for i in range(int(num_terms / 2)):
        cols.append(np.cos(2 * (i+1) * np.pi / L * x))
        cols.append(np.sin(2 * (i+1) * np.pi / L * x))
    return np.hstack(cols)
                    
def get_rbf_design_matrix(x, x_centers, ell):
    """Radial basis functions design matrix.
    
    Arguments:
    x        --  The input points on which you want to evaluate the
                 design matrix.
    x_center --  The centers of the radial basis functions.
    ell      --  The lengthscale of the radial basis function.
    """
    assert isinstance(x, np.ndarray), 'x is not a numpy array.'
    assert x.ndim == 2, 'You must make x a 2D array.'
    assert x.shape[1] == 1, 'x must be a column.'
    N = x.shape[0]
    cols = [np.ones((N, 1))]
    for i in range(x_centers.shape[0]):
        cols.append(np.exp(-(x - x_centers[i]) ** 2 / ell))
    return np.hstack(cols)

The problem that we need to solve to find the maximum a posteriori estimate is when the prior of the weights is a zero mean Gaussian with precision \(\alpha\):

\[ \left(\sigma^{-2}\boldsymbol{\Phi}^T\boldsymbol{\Phi} + \alpha\mathbf{I}\right)\mathbf{w} = \sigma^{-2}\boldsymbol{\Phi}^T\mathbf{y}. \]

This problem cannot be solved by numpy.linalg.lstsq. The stable way to solve this problem is this:

  • Construct the positive-definite matrix:

\[ \mathbf{A} = \left(\sigma^{-2}\mathbf{\Phi}^T\mathbf{\Phi}+\alpha\mathbf{I}\right) \]
\[ \mathbf{A} = \mathbf{L}\mathbf{L}^T, \]

where \(\mathbf{L}\) is lower triangular.

  • Then, solve the system:

\[ \mathbf{L}\mathbf{L}^T\mathbf{w} = \sigma^{-2}\mathbf{\Phi}^T\mathbf{y}_{1:n}, \]

doing a forward and a backward substitution. The methods scipy.linalg.cho_factor and scipy.linalg.cho_solve can be used for this. We implement this process below:

# I need this to take the Cholesky decomposition
import scipy

def find_w_map(Phi, y, sigma2, alpha):
    """Return the MAP weights of a Bayesian linear regression problem.
    
    Arguments
    Phi    -- The design matrix.
    y      -- The observed targets.
    sigma2 -- The noise variance.
    aplha  -- The prior weight precision.
    """
    A = (
        Phi.T @ Phi / sigma2
        + alpha * np.eye(Phi.shape[1])
    )
    L = scipy.linalg.cho_factor(A)
    w = scipy.linalg.cho_solve(
        L,
        Phi.T @ y / sigma2
    )
    return w

Let’s apply this to the synthetic dataset. Select polynomial degree and get the design matrix:

degree = 6
Phi = get_polynomial_design_matrix(x[:, None], degree)

Pick variance (here I am using the actual one):

sigma2 = 0.1 ** 2

Pick the regularization parameter:

alpha = 100.0

Solve for the MAP of the weights:

w = find_w_map(Phi, y, sigma2, alpha)

Make predictions and plot the results:

xx = np.linspace(-1, 1, 100)
yy_true = w0_true + w1_true * xx + w2_true * xx ** 2
Phi_xx = get_polynomial_design_matrix(
    xx[:, None],
    degree
)
yy = Phi_xx @ w

fig, ax = plt.subplots()
ax.plot(xx, yy, '--', label='Mean prediction')
ax.plot(x, y, 'kx', label='Observed data')
ax.plot(xx, yy_true, label='True response surface')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_title(
    f'$\\rho={degree}, '
    + f'\\sigma = {np.sqrt(sigma2):1.2f}, '
    + f'\\alpha={alpha:1.2e}$'
)
plt.legend(loc='best', frameon=False)
sns.despine(trim=True);
../_images/6fed3a12369229e6f48b98352d0957fd942087dbb4856c4bec445cab4d188feb.svg

Questions#

  • Experiment with different \(\alpha\)’s. Notice that for very small \(\alpha\)’s, we are overfitting. Notice that with very large \(\alpha\)’s, we are underfitting.

Selecting \(\alpha\) through a validation set#

Let’s plot the mean square error of a validation dataset as a function of \(\alpha\). First, here is our validation dataset:

x_valid = -1.0 + 2 * np.random.rand(20)
y_valid = (
    w0_true 
    + w1_true * x_valid 
    + w2_true * x_valid ** 2
    + sigma_true * np.random.randn(x_valid.shape[0])
)

We will take 50 \(\alpha\)’s between \(0.01\) and \(5\) and try each one of them out.

Hide code cell source
num_alphas = 50
min_alpha = 0.01
max_alpha = 10

# The alphas we will try
alphas = np.linspace(
    min_alpha,
    max_alpha,
    num_alphas
)

# To store the MSE:
MSEs = np.ndarray((num_alphas,))

# To store the weights
weights = np.ndarray((num_alphas, degree + 1))

for i, alpha in enumerate(alphas):
    w = find_w_map(Phi, y, sigma2, alpha)
    Phi_valid = get_polynomial_design_matrix(
        x_valid[:, None],
        degree
    )
    y_valid_predict = Phi_valid @ w
    MSE_alpha = np.linalg.norm(
        y_valid_predict - y_valid
    )
    MSEs[i] = MSE_alpha
    weights[i] = w

print("alpha\t MSE\t Weights")
print("-" * 60)
for alpha, mse, w in zip(alphas, MSEs, weights):
    print(
        f"{alpha:.3f}\t {mse:.3f}\t"
        + "[" +
        " ".join(
            [f"{wi:.2f}" for wi in w]
        )
        + "]"
    )
Hide code cell output
alpha	 MSE	 Weights
------------------------------------------------------------
0.010	 0.755	[-0.49 1.99 1.41 0.25 2.49 -0.12 -2.56]
0.214	 0.657	[-0.50 2.05 1.90 0.39 0.56 -0.59 -0.72]
0.418	 0.656	[-0.49 2.07 1.90 0.34 0.46 -0.56 -0.59]
0.622	 0.654	[-0.49 2.07 1.88 0.31 0.43 -0.54 -0.52]
0.826	 0.653	[-0.48 2.08 1.86 0.29 0.42 -0.53 -0.47]
1.029	 0.651	[-0.48 2.08 1.83 0.27 0.42 -0.51 -0.43]
1.233	 0.650	[-0.48 2.07 1.81 0.26 0.42 -0.50 -0.40]
1.437	 0.649	[-0.47 2.07 1.78 0.25 0.43 -0.49 -0.37]
1.641	 0.648	[-0.47 2.07 1.76 0.25 0.43 -0.48 -0.35]
1.845	 0.647	[-0.47 2.07 1.74 0.24 0.44 -0.47 -0.33]
2.049	 0.646	[-0.46 2.06 1.72 0.24 0.44 -0.46 -0.31]
2.253	 0.645	[-0.46 2.06 1.70 0.24 0.45 -0.45 -0.29]
2.457	 0.644	[-0.46 2.05 1.68 0.23 0.45 -0.44 -0.27]
2.660	 0.643	[-0.46 2.05 1.67 0.23 0.45 -0.43 -0.25]
2.864	 0.642	[-0.45 2.04 1.65 0.23 0.46 -0.42 -0.24]
3.068	 0.642	[-0.45 2.04 1.64 0.23 0.46 -0.41 -0.22]
3.272	 0.641	[-0.45 2.03 1.62 0.23 0.47 -0.40 -0.21]
3.476	 0.641	[-0.45 2.03 1.61 0.23 0.47 -0.39 -0.20]
3.680	 0.640	[-0.45 2.02 1.59 0.23 0.47 -0.38 -0.18]
3.884	 0.640	[-0.45 2.02 1.58 0.24 0.48 -0.37 -0.17]
4.088	 0.640	[-0.44 2.01 1.57 0.24 0.48 -0.37 -0.16]
4.291	 0.640	[-0.44 2.00 1.56 0.24 0.48 -0.36 -0.15]
4.495	 0.640	[-0.44 2.00 1.54 0.24 0.49 -0.35 -0.14]
4.699	 0.641	[-0.44 1.99 1.53 0.24 0.49 -0.34 -0.13]
4.903	 0.641	[-0.44 1.99 1.52 0.25 0.49 -0.33 -0.12]
5.107	 0.641	[-0.44 1.98 1.51 0.25 0.49 -0.32 -0.11]
5.311	 0.642	[-0.44 1.98 1.50 0.25 0.50 -0.32 -0.10]
5.515	 0.643	[-0.43 1.97 1.49 0.25 0.50 -0.31 -0.10]
5.719	 0.644	[-0.43 1.97 1.48 0.25 0.50 -0.30 -0.09]
5.922	 0.645	[-0.43 1.96 1.47 0.26 0.50 -0.29 -0.08]
6.126	 0.646	[-0.43 1.95 1.46 0.26 0.50 -0.29 -0.07]
6.330	 0.647	[-0.43 1.95 1.45 0.26 0.51 -0.28 -0.07]
6.534	 0.648	[-0.43 1.94 1.44 0.27 0.51 -0.27 -0.06]
6.738	 0.649	[-0.43 1.94 1.43 0.27 0.51 -0.27 -0.05]
6.942	 0.651	[-0.43 1.93 1.43 0.27 0.51 -0.26 -0.05]
7.146	 0.652	[-0.43 1.93 1.42 0.27 0.51 -0.25 -0.04]
7.350	 0.654	[-0.42 1.92 1.41 0.28 0.51 -0.24 -0.03]
7.553	 0.656	[-0.42 1.92 1.40 0.28 0.51 -0.24 -0.03]
7.757	 0.658	[-0.42 1.91 1.39 0.28 0.52 -0.23 -0.02]
7.961	 0.659	[-0.42 1.91 1.39 0.28 0.52 -0.23 -0.02]
8.165	 0.661	[-0.42 1.90 1.38 0.29 0.52 -0.22 -0.01]
8.369	 0.663	[-0.42 1.90 1.37 0.29 0.52 -0.21 -0.01]
8.573	 0.665	[-0.42 1.89 1.37 0.29 0.52 -0.21 -0.00]
8.777	 0.668	[-0.42 1.89 1.36 0.30 0.52 -0.20 0.00]
8.981	 0.670	[-0.42 1.88 1.35 0.30 0.52 -0.19 0.01]
9.184	 0.672	[-0.42 1.88 1.34 0.30 0.52 -0.19 0.01]
9.388	 0.674	[-0.41 1.87 1.34 0.30 0.52 -0.18 0.02]
9.592	 0.677	[-0.41 1.87 1.33 0.31 0.52 -0.18 0.02]
9.796	 0.679	[-0.41 1.87 1.33 0.31 0.53 -0.17 0.03]
10.000	 0.681	[-0.41 1.86 1.32 0.31 0.53 -0.17 0.03]

Let’s now plot the MSE as a function of the alphas:

fig, ax = plt.subplots()
ax.plot(alphas, MSEs)
ax.set_xlabel(r'$\alpha$')
ax.set_ylabel('Mean square error')
sns.despine(trim=True);
../_images/df4059a7b5d08c187a67af6d9d9caeaab63b4cea5d5b5c1e213a0d6bf723b9a0.svg

We should pick the \(\alpha\) with the smallest MSE. Here is how:

min_mse_index = np.argmin(MSEs)
best_alpha = alphas[min_mse_index]
best_w = weights[min_mse_index]
print(f"Best alpha {best_alpha:.2f}")
Best alpha 4.09

Let’s also plot the best fit:

xx = np.linspace(-1, 1, 100)
yy_true = w0_true + w1_true * xx + w2_true * xx ** 2
Phi_xx = get_polynomial_design_matrix(xx[:, None], degree)
yy = Phi_xx @ w

fig, ax = plt.subplots()
ax.plot(xx, yy, '--', label='Mean prediction')
ax.plot(x, y, 'kx', label='Observed data')
ax.plot(xx, yy_true, label='True response surface')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_title(r'$\rho={0:d}, \sigma = {1:1.2f}, \alpha={2:1.2e}$'.format(degree, np.sqrt(sigma2), alpha))
plt.legend(loc='best', frameon=False)
sns.despine(trim=True);
../_images/5486cfb0fbb5b22edbbc5ab966ec256ffe8467705026aa4e58cacc2e516b6854.svg

Questions#

  • Rerun the code cell above with an \(\alpha\) smaller than the optimal one. Observe how we overfit.

  • Rerun the code cell above with an \(\alpha\) greater than the optimal one. Observe how we underfit.