Bibliography#
Leonardo S. Bastos and Anthony O'Hagan. Diagnostics for gaussian process emulators. Technometrics, 51(4):425–438, 2009. URL: http://www.jstor.org/stable/40586652 (visited on 2023-10-15).
A. Beltrán-Pulido, D. Aliprantis, I. Bilionis, A.R. Munoz, F. Leonardi, and S.M. Avery. Uncertainty quantification and sensitivity analysis in a nonlinear finite-element model of a permanent magnet synchronous machine. IEEE Transactions on Energy Conversion, 2020. doi:10.1109/TEC.2020.3001914.
Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.
missing booktitle in Diaconis1988BayesianNA
P. Frazier. A tutorial on bayesian optimization. ArXiv, 2018. URL: https://api.semanticscholar.org/CorpusID:49656213.
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.
E. T. Jaynes. Probability theory: The logic of science. Cambridge University Press, Cambridge, 2003.
I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998. doi:10.1109/72.712178.
Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. Equation of state calculations by fast computing machines. 3 1953. URL: https://www.osti.gov/biblio/4390578, doi:10.2172/4390578.
Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 11 2005. ISBN 9780262256834. URL: https://doi.org/10.7551/mitpress/3206.001.0001, doi:10.7551/mitpress/3206.001.0001.
Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathematical Statistics, 22(3):400 – 407, 1951. URL: https://doi.org/10.1214/aoms/1177729586, doi:10.1214/aoms/1177729586.
C.P. Robert and G. Casella. Monte Carlo statistical methods. Springer Verlag, 2004.
A. Sahu, D. Aliprantis, and I. Bilionis. Quantification and propagation of uncertainty in the magnetic characteristic of steel and permanent magnets of a synchronous machine drive. IEEE Transactions on Energy Conversion, 2020. doi:10.1109/TEC.2020.2998142.
Claude Elwood Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423, 1948. URL: http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf (visited on 2003-04-22).
Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: bayesian physics-informed neural networks for forward and inverse pde problems with noisy data. Journal of Computational Physics, 425:109913, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0021999120306872, doi:https://doi.org/10.1016/j.jcp.2020.109913.