Bibliography#

[BOHagan09]

Leonardo S. Bastos and Anthony O'Hagan. Diagnostics for gaussian process emulators. Technometrics, 51(4):425–438, 2009. URL: http://www.jstor.org/stable/40586652 (visited on 2023-10-15).

[BPAB+20]

A. Beltrán-Pulido, D. Aliprantis, I. Bilionis, A.R. Munoz, F. Leonardi, and S.M. Avery. Uncertainty quantification and sensitivity analysis in a nonlinear finite-element model of a permanent magnet synchronous machine. IEEE Transactions on Energy Conversion, 2020. doi:10.1109/TEC.2020.3001914.

[Bis06]

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

[Dia88]

missing booktitle in Diaconis1988BayesianNA

[Fra18]

P. Frazier. A tutorial on bayesian optimization. ArXiv, 2018. URL: https://api.semanticscholar.org/CorpusID:49656213.

[GBC16]

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.

[Jay03]

E. T. Jaynes. Probability theory: The logic of science. Cambridge University Press, Cambridge, 2003.

[LLF98]

I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998. doi:10.1109/72.712178.

[MRR+53]

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. Equation of state calculations by fast computing machines. 3 1953. URL: https://www.osti.gov/biblio/4390578, doi:10.2172/4390578.

[RW05]

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 11 2005. ISBN 9780262256834. URL: https://doi.org/10.7551/mitpress/3206.001.0001, doi:10.7551/mitpress/3206.001.0001.

[RM51]

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathematical Statistics, 22(3):400 – 407, 1951. URL: https://doi.org/10.1214/aoms/1177729586, doi:10.1214/aoms/1177729586.

[RC04]

C.P. Robert and G. Casella. Monte Carlo statistical methods. Springer Verlag, 2004.

[SAB20]

A. Sahu, D. Aliprantis, and I. Bilionis. Quantification and propagation of uncertainty in the magnetic characteristic of steel and permanent magnets of a synchronous machine drive. IEEE Transactions on Energy Conversion, 2020. doi:10.1109/TEC.2020.2998142.

[Sha48]

Claude Elwood Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423, 1948. URL: http://plan9.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf (visited on 2003-04-22).

[YMK21]

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: bayesian physics-informed neural networks for forward and inverse pde problems with noisy data. Journal of Computational Physics, 425:109913, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0021999120306872, doi:https://doi.org/10.1016/j.jcp.2020.109913.