Show code cell source
MAKE_BOOK_FIGURES=Trueimport numpy as npimport scipy.stats as stimport matplotlib as mplimport matplotlib.pyplot as plt%matplotlib inlineimport matplotlib_inlinematplotlib_inline.backend_inline.set_matplotlib_formats('svg')import seaborn as snssns.set_context("paper")sns.set_style("ticks")def set_book_style(): plt.style.use('seaborn-v0_8-white') sns.set_style("ticks") sns.set_palette("deep") mpl.rcParams.update({ # Font settings 'font.family': 'serif', # For academic publishing 'font.size': 8, # As requested, 10pt font 'axes.labelsize': 8, 'axes.titlesize': 8, 'xtick.labelsize': 7, # Slightly smaller for better readability 'ytick.labelsize': 7, 'legend.fontsize': 7, # Line and marker settings for consistency 'axes.linewidth': 0.5, 'grid.linewidth': 0.5, 'lines.linewidth': 1.0, 'lines.markersize': 4, # Layout to prevent clipped labels 'figure.constrained_layout.use': True, # Default DPI (will override when saving) 'figure.dpi': 600, 'savefig.dpi': 600, # Despine - remove top and right spines 'axes.spines.top': False, 'axes.spines.right': False, # Remove legend frame 'legend.frameon': False, # Additional trim settings 'figure.autolayout': True, # Alternative to constrained_layout 'savefig.bbox': 'tight', # Trim when saving 'savefig.pad_inches': 0.1 # Small padding to ensure nothing gets cut off })def set_notebook_style(): plt.style.use('seaborn-v0_8-white') sns.set_style("ticks") sns.set_palette("deep") mpl.rcParams.update({ # Font settings - using default sizes 'font.family': 'serif', 'axes.labelsize': 10, 'axes.titlesize': 10, 'xtick.labelsize': 9, 'ytick.labelsize': 9, 'legend.fontsize': 9, # Line and marker settings 'axes.linewidth': 0.5, 'grid.linewidth': 0.5, 'lines.linewidth': 1.0, 'lines.markersize': 4, # Layout settings 'figure.constrained_layout.use': True, # Remove only top and right spines 'axes.spines.top': False, 'axes.spines.right': False, # Remove legend frame 'legend.frameon': False, # Additional settings 'figure.autolayout': True, 'savefig.bbox': 'tight', 'savefig.pad_inches': 0.1 })def save_for_book(fig, filename, is_vector=True, **kwargs): """ Save a figure with book-optimized settings. Parameters: ----------- fig : matplotlib figure The figure to save filename : str Filename without extension is_vector : bool If True, saves as vector at 1000 dpi. If False, saves as raster at 600 dpi. **kwargs : dict Additional kwargs to pass to savefig """ # Set appropriate DPI and format based on figure type if is_vector: dpi = 1000 ext = '.pdf' else: dpi = 600 ext = '.tif' # Save the figure with book settings fig.savefig(f"{filename}{ext}", dpi=dpi, **kwargs)def make_full_width_fig(): return plt.subplots(figsize=(4.7, 2.9), constrained_layout=True)def make_half_width_fig(): return plt.subplots(figsize=(2.35, 1.45), constrained_layout=True)if MAKE_BOOK_FIGURES: set_book_style()else: set_notebook_style()make_full_width_fig = make_full_width_fig if MAKE_BOOK_FIGURES else lambda: plt.subplots()make_half_width_fig = make_half_width_fig if MAKE_BOOK_FIGURES else lambda: plt.subplots()
Credible Intervals#
The posterior \(p(\theta|x_{1:N})\) captures everything we say about \(\theta\). Credible intervals are a way to summarize it. A credible interval is an interval inside which the parameter \(\theta\) lies with high probability. Specifically, a 95% credible interval \((\ell, u)\) (for lower and upper bounds) for \(\theta\) is such that:
Of course, there is not a unique, credible interval. You can move \((\ell, u)\) to the left or to the right in a way that keeps the probability contained in it at 0.95.
The central credible interval is particularly common. It is defined by solving the following root-finding problems:
and
for \(\ell\) and \(u\), respectively.
Let’s use a coin toss example to demonstrate this.
Show code cell source
import scipy.stats as st
theta_true = 0.8
X = st.bernoulli(theta_true)
N = 5
data = X.rvs(size=N)
alpha = 1.0 + data.sum()
beta = 1.0 + N - data.sum()
Theta_post = st.beta(alpha, beta)
fig, ax = plt.subplots()
thetas = np.linspace(0, 1, 100)
ax.plot(
[theta_true],
[0.0],
'o',
markeredgewidth=2,
markersize=10,
label='True value')
ax.plot(
thetas,
Theta_post.pdf(thetas),
label=r'$p(\theta|x_{1:N})$'
)
ax.set_xlabel(r'$\theta$')
ax.set_ylabel('Probability density')
ax.set_title('$N={0:d}$'.format(N))
plt.legend(loc='best', frameon=False)
sns.despine(trim=True);
Here is how you can find the credible interval with the help of scipy.stats
:
theta_low = Theta_post.ppf(0.025)
theta_up = Theta_post.ppf(0.975)
print(f'Theta is in [{theta_low:.2f}, {theta_up:1.2f}] with 95% probability')
Theta is in [0.36, 0.96] with 95% probability
Let’s visualize the credible interval:
Show code cell source
fig, ax = plt.subplots()
ax.plot(
[theta_true],
[0.0],
'o',
markeredgewidth=2,
markersize=10,
label='True value'
)
ax.plot(
thetas,
Theta_post.pdf(thetas),
label=r'$p(\theta|x_{1:N})$'
)
thetas_int = np.linspace(theta_low, theta_up, 100)
ax.fill_between(
thetas_int,
np.zeros(thetas_int.shape),
Theta_post.pdf(thetas_int),
color='red',
alpha=0.25
)
ax.plot(
[theta_low, theta_up],
np.zeros((2,)),
'x',
color='red',
markeredgewidth=2,
label='95% central CI'
)
ax.set_xlabel(r'$\theta$')
ax.set_title(f'$N={N}$')
plt.legend(loc='best', frameon=False)
sns.despine(trim=True);
So, is there another 95% credible interval? Yes there is. You can find it by solving thes problem:
and
for \(\ell\) and \(u\), respectively. Here is what you will find for the coin toss example.
theta_low_o = Theta_post.ppf(0.01)
theta_up_o = Theta_post.ppf(0.96)
print(f'Theta is in [{theta_low_o:.2f}, {theta_up_o:1.2f}] with 95% probability')
Theta is in [0.29, 0.94] with 95% probability
And here is how it compares to the previous one:
Show code cell source
fig, ax = plt.subplots()
ax.plot(
[theta_true],
[0.0],
'o',
markeredgewidth=2,
markersize=10,
label='True value'
)
ax.plot(
thetas,
Theta_post.pdf(thetas),
label=r'$p(\theta|x_{1:N})$'
)
thetas_int = np.linspace(theta_low, theta_up, 100)
ax.fill_between(
thetas_int,
np.zeros(thetas_int.shape),
Theta_post.pdf(thetas_int),
color='red',
alpha=0.25
)
ax.plot(
[theta_low, theta_up],
np.zeros((2,)),
'x',
color='red',
markeredgewidth=2,
label='95% central CI'
)
thetas_int_o = np.linspace(theta_low_o, theta_up_o, 100)
ax.fill_between(
thetas_int_o,
np.zeros(thetas_int_o.shape),
Theta_post.pdf(thetas_int_o),
color='blue',
alpha=0.25
)
ax.plot(
[theta_low_o, theta_up_o],
np.zeros((2,)),
'+',
color='blue',
markeredgewidth=2,
label='Other 95% CI'
)
ax.set_xlabel(r'$\theta$')
ax.set_title(f'$N={N:d}$')
plt.legend(loc='best', frameon=False)
sns.despine(trim=True);
Getting Credible Intervals when the Posterior is not Analytically Available#
Of course, you often do not have the posterior in analytical form and have to estimate the credible intervals via sampling. We will learned about this in Lecture 10.
Questions#
Find the credible interval for \(\theta\) conditioned on the data with 99% accuracy.
How many coin tosses do you have to do to estimate \(\theta\) within an accuracy of \(1\%\) with \(99\%\) probability? Do not try to do this analytically. Just experiment with different values of \(N\) for this synthetic example. Getting a number \(N\) that works for all possible datasets (assuming the model is correct) is an exciting but not trivial problem.