Show code cell source
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib_inline
matplotlib_inline.backend_inline.set_matplotlib_formats('svg')
import seaborn as sns
sns.set_context("paper")
sns.set_style("ticks");
Credible Intervals#
The posterior \(p(\theta|x_{1:N})\) captures everything we say about \(\theta\). Credible intervals are a way to summarize it. A credible interval is an interval inside which the parameter \(\theta\) lies with high probability. Specifically, a 95% credible interval \((\ell, u)\) (for lower and upper bounds) for \(\theta\) is such that:
Of course, there is not a unique, credible interval. You can move \((\ell, u)\) to the left or to the right in a way that keeps the probability contained in it at 0.95.
The central credible interval is particularly common. It is defined by solving the following root-finding problems:
and
for \(\ell\) and \(u\), respectively.
Let’s use a coin toss example to demonstrate this.
Show code cell source
import scipy.stats as st
theta_true = 0.8
X = st.bernoulli(theta_true)
N = 5
data = X.rvs(size=N)
alpha = 1.0 + data.sum()
beta = 1.0 + N - data.sum()
Theta_post = st.beta(alpha, beta)
fig, ax = plt.subplots()
thetas = np.linspace(0, 1, 100)
ax.plot(
[theta_true],
[0.0],
'o',
markeredgewidth=2,
markersize=10,
label='True value')
ax.plot(
thetas,
Theta_post.pdf(thetas),
label=r'$p(\theta|x_{1:N})$'
)
ax.set_xlabel(r'$\theta$')
ax.set_ylabel('Probability density')
ax.set_title('$N={0:d}$'.format(N))
plt.legend(loc='best', frameon=False)
sns.despine(trim=True);
Here is how you can find the credible interval with the help of scipy.stats
:
theta_low = Theta_post.ppf(0.025)
theta_up = Theta_post.ppf(0.975)
print(f'Theta is in [{theta_low:.2f}, {theta_up:1.2f}] with 95% probability')
Theta is in [0.36, 0.96] with 95% probability
Let’s visualize the credible interval:
Show code cell source
fig, ax = plt.subplots()
ax.plot(
[theta_true],
[0.0],
'o',
markeredgewidth=2,
markersize=10,
label='True value'
)
ax.plot(
thetas,
Theta_post.pdf(thetas),
label=r'$p(\theta|x_{1:N})$'
)
thetas_int = np.linspace(theta_low, theta_up, 100)
ax.fill_between(
thetas_int,
np.zeros(thetas_int.shape),
Theta_post.pdf(thetas_int),
color='red',
alpha=0.25
)
ax.plot(
[theta_low, theta_up],
np.zeros((2,)),
'x',
color='red',
markeredgewidth=2,
label='95% central CI'
)
ax.set_xlabel(r'$\theta$')
ax.set_title(f'$N={N}$')
plt.legend(loc='best', frameon=False)
sns.despine(trim=True);
So, is there another 95% credible interval? Yes there is. You can find it by solving thes problem:
and
for \(\ell\) and \(u\), respectively. Here is what you will find for the coin toss example.
theta_low_o = Theta_post.ppf(0.01)
theta_up_o = Theta_post.ppf(0.96)
print(f'Theta is in [{theta_low_o:.2f}, {theta_up_o:1.2f}] with 95% probability')
Theta is in [0.29, 0.94] with 95% probability
And here is how it compares to the previous one:
Show code cell source
fig, ax = plt.subplots()
ax.plot(
[theta_true],
[0.0],
'o',
markeredgewidth=2,
markersize=10,
label='True value'
)
ax.plot(
thetas,
Theta_post.pdf(thetas),
label=r'$p(\theta|x_{1:N})$'
)
thetas_int = np.linspace(theta_low, theta_up, 100)
ax.fill_between(
thetas_int,
np.zeros(thetas_int.shape),
Theta_post.pdf(thetas_int),
color='red',
alpha=0.25
)
ax.plot(
[theta_low, theta_up],
np.zeros((2,)),
'x',
color='red',
markeredgewidth=2,
label='95% central CI'
)
thetas_int_o = np.linspace(theta_low_o, theta_up_o, 100)
ax.fill_between(
thetas_int_o,
np.zeros(thetas_int_o.shape),
Theta_post.pdf(thetas_int_o),
color='blue',
alpha=0.25
)
ax.plot(
[theta_low_o, theta_up_o],
np.zeros((2,)),
'+',
color='blue',
markeredgewidth=2,
label='Other 95% CI'
)
ax.set_xlabel(r'$\theta$')
ax.set_title(f'$N={N:d}$')
plt.legend(loc='best', frameon=False)
sns.despine(trim=True);
Getting Credible Intervals when the Posterior is not Analytically Available#
Of course, you often do not have the posterior in analytical form and have to estimate the credible intervals via sampling. We will learned about this in Lecture 10.
Questions#
Find the credible interval for \(\theta\) conditioned on the data with 99% accuracy.
How many coin tosses do you have to do to estimate \(\theta\) within an accuracy of \(1\%\) with \(99\%\) probability? Do not try to do this analytically. Just experiment with different values of \(N\) for this synthetic example. Getting a number \(N\) that works for all possible datasets (assuming the model is correct) is an exciting but not trivial problem.